Steel Beam Calculation

* You can add your own text, diagrams and photos here *

![Diagram of Steel Beam Calculation](image)

**Beam details**

**152 x 89 x 16 UB S275**

Beam effective span length: **4 metres**

- **Width:** 88.7 mm
- **Depth:** 152.4 mm
- **Web:** 4.5 mm
- **Flange:** 7.7 mm
- **Radius:** 7.6 mm
- **Mass per metre:** 16 kg/m

**Safety factors, restraints & deflection limits**

- **Permanent load safety factor:** 1.35
- **Variable load safety factor:** 1.5
- **Beam is fully restrained along its length:** No
- **Length between lateral restraints:** 4 metres

- **Variable load deflection limit:** Span/360 = 11.11 mm
- **Total load deflection limit:** Span/200 = 20 mm
Load details

**UDL 1: Flat roof, with no permanent access**

- Permanent (dead) load per square metre: **1 kN/m²**
- Variable (live) load per square metre: **0.75 kN/m²**
- Width of load perpendicular to beam, or height of load supported by beam: **2.5 metres**

Calculations

**Bending moments**

\[ M_{c,y} = 33.8 \text{kNm} > 12.8 \text{kNm}, \text{ Therefore OK} \]

\[ M_b = 17.8 \text{kNm} > 12.8 \text{kNm}, \text{ Therefore OK} \]

- \( M_b \) value INTERPOLATED from Tata Steel 'Blue Book' to BS EN 1993-1-1
- C1 value conservatively taken as 1.0

**Shear forces**

\[ V_c = 130 \text{kN} \times 0.5 = 65 \text{kN} > 12.8 \text{kN}, \text{ Therefore OK} \]

- Shear Capacity, \( V_c \) from Tata Steel 'Blue Book' to BS EN 1993-1-1
- Reduction of moment resistance by high Coincident shear force has been avoided by checking that the shear force is no more than 50% of the shear resistance

**Deflection**

- Variable load deflection = 3.57mm < 11.11mm, Therefore OK
- Total load deflection = 8.63mm < 20mm, Therefore OK

Notes

- \( M_{c,y} \) value from Tata Steel 'Blue Book' to BS EN 1993-1-1
- \( M_b \) value interpolated from Tata Steel 'Blue Book' to BS EN 1993-1-1
- C1 value conservatively taken as 1.0
- Shear Capacity, \( V_c \) from Tata Steel 'Blue Book' to BS EN 1993-1-1
- Reduction of moment resistance by high coincident shear force has been avoided by checking that the shear force is not more than 50% of the shear resistance
Ends of beam are to be laterally restrained. Ends of beams can be laterally restrained using one of the following methods;

1) End of beam built into masonry wall.
2) End of beam fixed to a masonry wall.
3) End of beam fixed to a column or a beam.

The designer is to ensure that the proposed detail adequately ensures that the end of the beam is laterally restrained.

No allowance has been made for destabilising loads which are outside the scope of these calculations (Destabilising loads would not normally occur in a traditional masonry structure)